Tag Archives: worker safety

Worker dies while manually measuring tank

By Kim Smiley

The potential danger of confined spaces is well documented, but nine fatalities have shown that people working near open hydrocarbon storage hatches can also be exposed to dangerous levels of hydrocarbon gases and oxygen-deficient atmospheres.  NPR recently highlighted this issue in an article entitled “Mysterious Death Reveals Risk In Federal Oil Field Rules” that discussed the death of Dustin Bergsing.  His job duties included opening the hatch on a crude oil storage tank to measure the level of the oil and was found dead next to an open hatch.  He was healthy and only 21 years old.

A Cause Map, a visual format for performing a root cause analysis, can be used to help explain what happened to cause his death.  A Cause Map intuitively lays out the cause-and-effect relationships that contributed to an issue and is built by asking “why” questions.  Click on “Download PDF” to view a high level Cause Map of this accident.

So why did his death occur?  An autopsy showed that his death occurred because he had hydrocarbons in his blood.  This occurred because he was exposed to hydrocarbon vapor and he remained in the dangerous environment. (When two causes both contribute to an effect, they are listed vertically on the Cause Map and separated by an “and”.)

When a person is exposed to hydrocarbon vapor, they get disoriented before passing out so it is very difficult for them to get to safety on their own.  Bergsing was working alone at the time of his death and no one was aware that he was in trouble before it was too late.

He was exposed to hydrocarbon gases because he opened a hatch on a crude oil storage tank and the gas had collected at the top of the tank.  He opened the hatch because he planned to manually measure the tank level by dropping a rope inside. Manual tank measurement is a common method to determine level in crude oil storage tanks. Crude oil contains volatile hydrocarbons that can bubble out of the crude oil and collect at the top; the gas will rush out of the tank if a hatch is opened.

Additionally, he wasn’t wearing adequate PPE equipment because it wasn’t required by any regulations and there was limited awareness of this danger.

After his and the other deaths, the industry is starting to become more aware of this issue.  The National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA) issued a hazard alert bulletin that identified health and safety risks to workers who manually gauge or sample fluids on production and flowback tanks from exposure to hydrocarbon gases and vapors and exposure to oxygen-deficient atmospheres. In addition to working to raise awareness of the issue, OSHA and NIOSH made recommendations to improve working safety that include the following:

– Implementing alternate procedures that allow workers to monitor tank levels and sample without opening hatches

– Installing hatch pressure indicators

– Conducting worker exposure assessments

– Providing training on the hazard and posting hazard signage

– Not permitting employees to work alone

Please read the OSHA and NIOSH hazard alert bulletin for more information and a full list of the recommendations. Many of the recommendations would be expensive and time-consuming to implement, but some may be relatively simple ways to reduce risk. Continuing to provide information to workers about the potential hazards might be a good first step to improve their safety.

Track Workers Killed by Train

By ThinkReliability Staff

A derailment and the fatalities of two railroad workers on April 3, 2016 has led to an investigation by the National Transportation Safety Board (NTSB). In this investigation, the NTSB will address the impacts of the accident, determine what caused the accident and will provide recommendations to prevent similar accidents from recurring. While the investigation is still underway, a wealth of information related to the accident is already available to begin the analysis. We will look at what is currently known regarding the accident in a Cause Map, a visual form of root cause analysis.

The first step of the analysis is to define the problem. This includes the what, when, and where of the incident, as well as the impacts to the organizational goals. Capturing the impacts to the goals is particularly important because the recommendations that will result from the analysis aim to reduce these impacts. If we define the problem as simply a “derailment”, recommendations may be limited to those that prevent future derailments. Not only are we looking for recommendations to prevent future derailments, we are looking for recommendations to prevent all the impacted goals. In this case, that includes worker safety: 2 workers died, public safety: 37 passengers were injured, customer service: the train derailed, property: the train and some construction equipment was damaged, and labor: response and investigation are required.

The analysis is performed by beginning with the impacted goals and developing the cause-and-effect relationships that led to those impacts. Asking “why” questions can help to identify some of the cause-and-effect relationships, but there may be more than one cause that results in an effect. In this case, the worker fatalities occurred because the train struck heavy equipment and the workers were in/on/near the equipment. Both of these causes had to occur for the effect to result. The workers were on the equipment performing routine maintenance. In addition, their watch was ineffective. When capturing causes, it’s important to also include evidence, which validates the cause.

We know the watch was ineffective, because federal regulation requires a watch for incoming trains that gives at least a fifteen second warning. Fifteen seconds should have been sufficient time for the workers to exit the equipment. Because this did not happen, it follows that the watch was ineffective.

The train struck the heavy equipment because the equipment was on track 3, the train was on track 3, and the train was unable to brake in time. It’s unclear why the heavy equipment was on the track; rail safety experts say heavy equipment should never be directly on the track. The train was on track 3 because it was allowed on the track. Work crews are permitted to shut off the current to preclude passage of trains into the work zone, but they did not in this case, for reasons that are still being investigated. Additionally, the dispatcher allowed the train onto the track. Per federal regulations, when workers are on the track, train dispatchers may not allow trains on track until roadway worker gives permission. It appears that in this case the workers either failed to secure permission to work on the track (thus notifying the dispatcher of their presence) or the work notification was improperly cancelled, allowing trains to return to the track, possibly due to a miscommunication between the night and day crews. This is also still under investigation.

While inspection of the cars and maintenance records found no anomalies, the braking system is under investigation to determine whether or not it affected the train’s ability to brake. Also under investigation is the Positive Train Control (PTC), which should have emitted warnings and slowed the train automatically. However, the supplemental shunting device, which alerts the signaling system that the track is occupied, and is required by Amtrak rules, was not in place. Whether this was sufficient to prevent the PTC from stopping the train in time is also under investigation. The conductor placed the train in emergency mode 5 seconds before the collision. As the train was traveling at 106 mph (the speed limit was 110 mph in the area), this did not give adequate time to brake. There should have been a flagman to notify the train that a crew was on the track, but was not. The flagman also carries an air horn, which provides another notification to the track crew that a train is coming.

Says Ashley Halsey III, reporting in The Washington Post, “Basic rules of railroading and federal regulations should have prevented the Amtrak derailment near Philadelphia on Sunday that killed two maintenance workers.” It appears that multiple procedural requirements were not followed, but more thorough investigation is required to determine why and what can be done in the future to improve safety by preventing derailments and worker fatalities.

To view the available information in a Cause Map, please click “Download PDF” above.

Working Conditions Raise Concerns at Fukushima Daiichi

By ThinkReliability Staff

The nearly 7,000 workers toiling to decommission the reactors at Fukushima Daiichi after they were destroyed by the earthquake and tsunami on March 11, 2011 face a daunting task (described in our previous blog). Recent events have led to questions about the working conditions and safety of these workers.

On January 16, 2015, the local labor bureau instructed the utility that owns the plants to reduce industrial accidents. (The site experienced 23 accidents in fiscal year 2013 and 55 so far this fiscal year.) Three days later, on January 19, a worker fell into a water storage tank and was taken to the hospital. He died the next day, as did a worker at Fukushima Daini when his head got caught in machinery. (Fukushima Daini is nearby and was less impacted by the 2011 event. It is now being used as a staging site for the decommissioning work at Fukushima Daiichi.)

Although looking at all industrial accidents will provide the most effective solutions, often digging into just one in greater detail will provide a starting point for site improvements. In this case, we will look at the January 19 fall at Fukushima Daiichi to identify some of the challenges facing the site that may be leading to worker injuries and fatalities.

A Cause Map, or visual form of root cause analysis, is begun by determining the organizational impacts as a result of an incident. In this case the worker fall impacted the safety goal due to the death of the worker. The environmental goal was not impacted. (Although the radiation levels at the site still require extensive personal protective equipment, the incident was not radiation-related.) Workers on site have noted difficult working conditions, which are thought to be at least partially responsible for the rise in incidents, as are the huge number of workers at the site (itself an impact to the labor/time goal). Lastly, local organizations have raised regulatory concerns due to the high number of incidents at the site.

An analysis of the issues begins with one impacted goal. In this case, the worker death resulted from a fall into a ten-meter empty tank. The worker was apparently not found immediately (though specific timeline details and whether or not that impacted the worker’s outcome have not been released) because it appears he was working alone, likely due to the massive manpower needs at the site. Additionally, the face masks worn by all workers (due to the high radiation levels still present) limit visibility.

The worker was checking for leaks at the top of the tank, which is being used to store water used to cool the reactors at the site. There is a general concern about lack of knowledge of workers (many of whom have been hired recently with little or no experience doing the types of tasks they are now performing), though again, it’s unclear whether this was applicable in this case. Of more concern is the ineffective safety equipment – apparently the worker did not securely fasten his safety harness.

The reasons for this, and the worker falling in the first place, are likely due to worker fatigue or lack of concentration. Workers at the site face difficult conditions doing difficult work all day (or night) long, and have to travel far afterwards, as the surrounding area is still evacuated. Reports of mental health issues and fatigue in these workers has led to the opening of a new site providing meals and rest for these workers.

These factors are likely contributing to the increase in accidents, as is the number of workers at the site, which doubled from December 2013 to December 2014. Local organizations are still calling for action to reduce these actions. “It’s not just the number of accidents that has been on the rise. It’s the serious cases, including deaths and serious injuries that have risen, so we asked Tokyo Electric to improve the situation,” says Katsuyoshi Ito, a local labor standards inspector.

In addition to improving working conditions, the site is implementing improved worker training – and looking at discharging wastewater instead of storing it, which would reduce the pieces of equipment required to be monitored and maintained. Improvements must be made, because decades of work remains before work at the site will be completed.

Click here to sign up for our FREE webinar “Root Cause Analysis Case Study: Fukushima Daiichi” at 2:00 pm EDT on March 12 to learn more about how the earthquake and tsunami on March 11, 2011 impacted the plant.

10,000 Pound Buoy Falls on Workers

By Kim Smiley

On December 10, 2014, a buoy that weighs close to 10,000 pounds fell onto workers at an inactive ship maintenance facility in Pearl Harbor. Two workers were killed and two others sustained injuries. While an object this large is an extreme example of the dangers of dropped objects, worker injuries and deaths from falling objects of all sizes is a significant safety concern. A US census report of fatal occupation injuries states that 245 workers were killed after being struck by falling objects in 2013 alone.

The case of the dropped buoy can be built into a Cause Map, a visual root cause analysis, to better understand what happened. Understanding the details of an accident is necessary to ensure that a wide range of solutions is considered and that any solutions implemented will be effective at preventing future incidents.

The investigation into the falling buoy is still underway so some information is not yet available, but it can easily be incorporated into the Cause Map once it is known. Any causes that need more information or evidence can be noted with a question mark to show that there is still an open question.

Exactly what caused the buoy to drop hasn’t been released yet, but it is known that the safety lines attached to the buoy failed. Both of these issues need to be investigated to ensure that solutions can be implemented to prevent further tragedies.

Additionally, there are open questions about why people were working under the path of the lift. The workers were wearing hard hats, but this is obviously inadequate protection against a 10,000 buoy. The contractors were working to strengthen mooring lines at the time of the accident, but no one should be where they could be crushed if such a large object was dropped, as it was in this case. As stated by Jeff Romeo, the Occupational Safety and Health Administration (OSHA) Honolulu area director, “We’re still looking at the facts to try to determine the exact locations of where these employees were located. If in fact, they were working directly underneath the load, then that would be an alarming situation.”

The OSHA investigation is currently underway and is expected to take four to six months. Additionally, the Navy is launching a Safety Investigation Board to review the accident with findings expected to be released by February. Once the investigation is complete, work processes will need to be reviewed to see what changes need to be made to prevent any future injuries from falling objects.

To view an initial Cause Map of this incident, click on “Download PDF” above.

Fingertips Amputated After Slip on Ice

By ThinkReliability Staff

Information on a slip that caused severe damage to an electrical contractor in Newcastle in August 2013 was recently released by Great Britain’s Health and Safety Executive (HSE). Though this incident didn’t make the front pages of the newspaper, it is representative of many of the injury investigations which we facilitate using the Cause Mapping method.

The first step in the Cause Mapping method of root cause analysis is to capture the what, when and where of the incident and the impacts to the organizational goals. In this case, the what (contractor slip and hand injury), when (August 30, 2013) and where (a moving conveyor at a baguette manufacturer in Leeds) are captured, as well as any differences and the task being performed at the time of the incident. There were two notable differences during the incident as compared to an “average” day that should also be noted: the safety guard had been removed from the conveyor and ice had accumulated on the floor. These differences may or may not be causally related to the incident. Additionally, the task being performed (cleaning up after contract electrical work) is captured as it, too, may be causally related to the incident.

The impacts to the goals are analogous to what stood in the way of a perfect day. A serious injury involving the partial amputation of two fingers and the injury of a third is an impact to the safety goal in this example. The £8,500 fine levied by the HSE is an impact to the regulatory goal. The worker had four weeks off work due to the injury, which is an impact to the labor goal. It is unclear if any other goals were impacted by this incident.

Once at least one impact to the goals has been determined, asking “why” questions helps us complete the second step, or analysis. In the analysis, we capture cause-and-effect relationships that map out the issues that led to the incident. In this case, the injury was caused by the contractor’s hand striking an unprotected drive chain on a moving conveyor. This occurred because the hand struck the area, the drive chain was unprotected, and the conveyor was moving. All three of these causes had to occur for the resulting injury.

The contractor’s hand struck the area because of a slip on an icy floor. Ice from an open freezer door (which appeared to be malfunctioning) had built up and had not been removed.   The drive chain was unprotected because the safety guard had been removed from the conveyor, which was moving likely due to normal operations.

According to Shuna Rank, the HSE inspector, “This worker’s injuries should not and need not have happened. This incident was easily preventable had Country Style Foods Ltd ensured safety guards were in place on the machinery. The company should also have taken steps to prevent the accumulation of ice on the freezer floor. Guards and safety systems are there for a reason, and companies have a legal duty of care to ensure they are properly fitted and working effectively at all times. Slips and trips are the biggest cause of major injuries in the food and drink industry with 37% of all major accidents in the industry being as a result of slips.”

The inspector’s quote clearly identifies the areas for improvement that could reduce the risk of similar incidents occurring. Namely, the manufacturer must ensure that damage resulting in ice buildup is fixed as soon as possible and that in the meantime, ice is regularly cleared away and the area is marked as a slip hazard. If a safety guard is removed for any reason, the conveyor should not be operating until it has been replaced properly. Ensuring that equipment is in proper working order is essential to reduce the risk to workers such as the injuries demonstrated in this case.

To view the Outline and Cause Map, please click “Download PDF” above. Or click here to read more.