“Ghost Train” Causes Head-On Collision in Chicago

By Kim Smiley

On September 30, 2013, an unoccupied train collided head on with another train sending 30 people to the hospital in Chicago.  In a nod to the season and the bizarre circumstances of the accident, the unoccupied train has been colorfully dubbed “the ghost train”. 

So what caused the “ghost train” and how did it end up causing a dangerous train collision?  Investigators from the National Transportation Safety Board (NTSB) are still reviewing the details of the accident, but some information is available.  An initial Cause Map, or visual root cause analysis, can be built to capture what is already known and can be expanded to incorporate more information as the investigation progresses.  A Cause Map is built by asking “why” questions and documenting the answers to visually lay out all the causes that contributed to an accident to show the cause-and-effect relationships from left to right.

In this example, the trains collided because an unoccupied train began moving and the safety systems in place did not stop the train.  Investigators still haven’t determined exactly what caused the train cars to move, but a key piece of the puzzle is that there was still power to the cars while they were being stored in a repair terminal awaiting maintenance.  The NTSB believes that it was common practice to leave power to cars so that the lights could be used to illuminate the terminal.  Workers used the lights to discourage graffiti and vandalism because the terminal was located in a high crime neighborhood. 

Investigators will need to not only determine why the train started rolling, but also learn more about why the safety systems didn’t prevent the accident.  Before colliding with another train, the unoccupied train traveled through five mechanical train-stop mechanisms, each of which should have stopped a train without a driver.  Emergency brakes were applied at each train-stop that caused the train to pause momentarily, but then it started moving because the setting on the master lever caused the train to restart.  Review of the safety systems will need to be part of the investigation to ensure that adequate protection is in place to prevent anything similar from occurring again.

The NTSB investigation is still ongoing, but the NTSB has stated that de-energizing propulsion power and using an alternate brake setting could help prevent unintended movement of unoccupied train cars. Additionally, the NTSB believes the use of a wheel chock and/or derail would ensure that a train stopped by a mechanical train stop mechanism remains stopped.  Based on the information already uncovered, the NTSB has issued an urgent safety recommendation to the Federal Transit Authority (FTA). The NTSB recommended that the FTA issue a safety advisory to all rail transit properties to review procedures for storing unoccupied train cars to ensure that they were left in a safe condition that wouldn’t allow unintended movement and to ensure that they had redundant means of stopping any unintended movement.  There is more information that is needed to fully understand this accident, but these precautions would be effective solutions that can be quickly implemented to reduce the risk of train accidents.

Utah Fights for National Parks

By ThinkReliability Staff

Beginning on October 1, 2013 with the failure to spending approval, the US government entered a partial shutdown including the complete closure of the National Parks, as specified in the National Park Service Contingency Plan.  While the government shutdown had far-reaching effects, both across industry and geographically, areas of Utah   have been hit particularly hard by the closure of multiple National Parks in the area. The shutdown finally ended on October 17 when the government reached a deal to reopen.

A large proportion of Utah businesses are dependent on revenue brought in from tourists visiting the multiple Federal lands in the state, which include National Parks, National Monuments and National Recreation Areas.  A total of five counties in Utah declared a state of emergency, with the counties saying they’re losing up to $300,000 a day.  San Juan County, the last to declare a state of emergency, went a step further and decided it would reopen the parks themselves using local personnel to provide necessary emergency response and facilities for park visitors.

On October 10, the state of Utah came to an agreement with the Department of the Interior to pay for the Park Service to reopen the park for up to 10 days at a cost of $166,572 a day.  (It is possible, though not automatic, that the state will be reimbursed for these costs after funding is restored.)  Luckily a “practical and temporary solution” (as described by the Secretary of the Interior Sally Jewell) was found before county officials had to resort to what they described as “civil disobedience”.  (Trespassing in a National Park can result in a citation that could lead to fines or jail terms.)

This situation mirrors that frequently found on a smaller scale in all workplaces.  Concerned employees find themselves in circumstances that they believe are not in the best interest of their company or customers.  If support for change is not provided by management, these employees will develop work-around (like illegally reopening a National Park to allow tourists to enter).  Sometimes workarounds are actually a more effective way of completing work tasks, but they can also sometimes lead to unintended consequences that can be disastrous.

This is why the most effective work processes are developed with the experience and insight of employees at all levels.  Taking their concerns into account at the development of procedures and on an ongoing basis will reduce the use of potentially risky workarounds, and can increase the success of all an organization’s goals.

To view the Outline, Cause Map, and considered solutions, please click “Download PDF” above.  Or click here to read more.

Rules on Inflight Electronics May be Changing Soon

By Kim Smiley

In welcome news to many airline passengers, it looks like the FAA may soon allow the use of personal electronic devices during the entire duration of flights, including takeoff and landing.  The current restrictions on the use of personal electronics are being reviewed following a recent recommendation by an aviation advisory committee made of up pilots, mechanics, engineers and other aviation experts.

A Cause Map, a visual format for performing a root cause analysis, can be used to analyze this issue.  A Cause Map is built by asking “why” questions and intuitively laying out the many causes that contributed to an issue to show the cause-and-effect relationships.  The first step in the Cause Mapping process is to document the basic background information as well as list how the issue impacts the goals in the an Outline.

One of the major impacts for this example is that there is concern that use of personal electronic devices onboard aircraft may be dangerous and increase the risk of a plane crash.  Currently, the use of personal electronics is allowed once a plane is above 10,000 feet, which is basically the whole flight except landing and takeoff which are considered the most critical portions of the flight.   These restrictions are in place because pilots depend on electronic systems, such as navigation and communications systems, to safely do their job and there is concern about the potential for interference with these vital systems.

How likely it is that dangerous interference could be an actual issue is debated.  There were 75 reports by pilots of suspected electronic device interference between 2003 and 2009, according to the International Air Transport Association.  However, it’s difficult to reproduce interference and it has never been cited as a cause in any airplane accident.  The current ban on the use of electronics also seems to be loosely enforced, raising questions about its necessity and effectiveness.  (A survey by the Consumer Electronics Association also found that nearly a third of airplane passengers said they left on a portable electronic device on a flight during the previous year.)  There seems to be a general consensus that this is low risk issue, but the potentially high consequences if it occurs has made some reluctant to reduce the restrictions.

There are also some non-technical issues that need to be considered with the onboard use of electronics.  There is concern that passengers enthralled with their devices will be distracted and miss important information during preflight safety briefs.  There is also a concern that larger devices, such as laptops, could become a missile hazard and hurt passengers if the plane moves unexpectedly.

If the new recommendations are approved, passengers will be able to use any device that doesn’t transfer data the entire flight, including takeoff and landing.  Passengers would be able to leave all devices turned on, but they would need to set them to airplane mode so that no data is transmitted.  So you won’t be able to make calls on your smartphone or stream video, but you would be able to rock out to music already downloaded or read a book on a kindle.  Larger devices will still need to be stowed during takeoff and landing because nobody wants to be hit with a laptop, but smaller gadgets will be fair game if the new recommendations are adopted.

To see a Cause Map of this issue, click on “Download PDF” above.




The Salvage Process of Costa Concordia

By ThinkReliability Staff

On September 16, 2013, the fatally stricken Costa Concordia was lifted upright (known as “parbuckling”) after salvage operations that were the most expensive and involved the largest ship ever. The ship ran aground off the coast of Italy January 13, 2012 (see our previous blog about the causes of the ship running aground) and has been lying on its side for the 20 months since.

The ship grounding had immediate, catastrophic impacts, including the death of 32 people. However, it also had longer term impacts, mainly pollution from the fuel, sewage and other hazardous materials stored aboard the ship. It was determined that the best way to minimize the leakage from the ship would be to return it upright and tow it to port, where it the onboard waste could be emptied and disposed of, then the ship broken up for scrap.

Because a salvage operation of this magnitude (due to the size and location of the ship) had never been attempted, careful planning was necessary. Processes like this salvage operation can be described in a Process Map, which visually diagrams the steps that need to be taken for a process to be completed successfully. A Process Map differs from a Cause Map, which visually diagrams cause-and-effect relationships to show the causes that led to the impacts (such as the deaths and pollution). Whereas a Cause Map reads backwards in time (the impacted goals result from the causes, which generally must precede those impacts), a Process Map reads from left to right along with time. (Step 1 is to the left of, and must be performed before, Step 2.) In both cases, arrows indicate the direction of time.

Like a Cause Map, Process Maps can be built in varying levels of detail. In a complex process, many individual steps will consist of more detailed steps. Both a high level overview of a process, as a well as a more detailed breakdown, can be useful when developing a process. Processes can be used as part of the analysis step of an incident investigation – to show which steps in a process did not go well – or as part of the solutions – to show how a process developed as a solution should be implemented.

In the example of the salvaging of the Costa Concordia, we use the Process Map for the latter. The salvaging process is part of the solutions – how to remove the ship while minimizing further damage and pollution. This task was not easy – uprighting the ship (only the first step in the salvage process) took 19 hours, involved 500 crewmembers from 26 countries and cost nearly $800 million. Other options used for similar situations included blowing up the ship or taking it apart on-site. Because of the hazardous substances onboard – and the belief that two bodies are still trapped under or inside the ship – these options were considered unacceptable.

Instead, a detailed plan was developed to prepare for leakage with oil booms that held sponges and skirts, then installed an underwater platform and 12 turrets to aid in the parbuckling and hold the ship upright. The ship was winched upright using 36 cables and is being held steady on the platform with computer-controlled chains until Spring, when the ship will be floated off the platform and delivered to Sicily to be taken apart.

To view the Process Map in varying levels of detail, please click “Download PDF” above. Or, see the Cause Map about the grounding of the ship in our previous blog.