Tag Archives: oil

Train Derails on Track Just Inspected

By Angela Griffith

A train derailment in the Columbia River Gorge near Mosier, Oregon resulted in a fire that burned for 14 hours. The Federal Railroad Administration (FRA) preliminary investigation says the June 3rd derailment was caused by a broken lag bolt which allowed the track to spread, resulting in the 16-car derailment. Although there is only one other known instance of a broken lag bolt causing a train derailment, the FRA determined that the bolt had been damaged for some time, and had been inspected within days of the incident, raising questions about the effectiveness of these inspections.

Determining all the causes of a complex issue such as a train derailment can be difficult, but doing so will provide the widest selection of possible solutions. A Cause Map, or visual root cause analysis, addresses all aspects of the issue by developing cause-and-effect relationships for all the causes based on the impacts to an organization’s goals. We can create a Cause Map based on the preliminary investigation. Additional causes and evidence can be added to the map as more detail is known.

The first step in the Cause Mapping process is to determine the impacts to the organization’s goals. While there were no injuries in this case, the massive fire resulting from the derailment posed a significant risk to responders and nearby citizens, an impact to the safety goal. The release of 42,000 gallons of oil (although much of it was burned off in the fire) is an impact to the environmental goal. The customer service goal is impacted by the evacuation of at least 50 homes and the regulatory goal is impacted by the potential for penalties, although the National Transportation Safety Board (NTSB) has said it will not investigate the incident. The state of Oregon has requested a halt on oil traffic, which would be an impact to the schedule goal. The property goal is impacted by the damage to the train cars, and the labor/ time goal is impacted by the response and investigation.

The analysis, which is the second step in the Cause Mapping process, begins with one of the impacted goals and develops cause-and-effect relationships by asking ‘Why’ questions. In this case, the safety goal is impacted by the high potential for injuries. This is caused by the massive fire, which burned for 14 hours. There may be more than one cause resulting in an effect, such as a fire, which is caused by heat, fuel, and oxygen. The oxygen in this case is from the atmosphere. The heat source is unknown but could have been a spark caused by the train derailment. The fire was fueled by the 42,000 gallons of crude released due to damage to train cars, which were transporting crude from the Bakken oil fields, caused by the derailment.

The derailment of 16 cars of the train was caused by the broken lag bolt. Any mechanical failure, such as a break, results from the stress on that object exceeding the strength of the object. In this case, the stress was caused by the weight of the 94-car train. The length of a train carrying crude oil is not limited by federal regulations. The strength of the bolts was reduced due to previous damage, which was not identified prior to the failure. While the track strength is evaluated every 18 months by the Gauge Restraint Measurement System (GRMS), it did not identify the damage. It’s unclear the last time it was performed.

Additionally, although the track is visually inspected twice a week by the railroad, it is done by vehicle, which would have made the damage harder to spot. The FRA does not require walking inspections. Nor does the FRA inspect or review the railroad’s inspections very often – there are less than 100 inspectors for the 140,000 miles of track across the country. There are only 3 in Oregon.

As a result of the derailment, the railroad has committed to replacing the existing bolts with heavy-duty ones, performing GRMS four times a year, enhanced hyrail inspections and visual track inspections three times a week, and performing walking inspections on lag curves monthly.

The FRA is still evaluating actions against the railroad and is again calling for the installation of advanced electronic brakes, or positive train control (PTC). It has also recommended PTC after other incidents, such as the deaths of two railroad workers on April 3 (see our previous blog) and the derailment in Philadelphia last year that killed 8 (see our previous blog).

To view a one-page PDF of the Cause Mapping investigation, click on “Download PDF” above. Or, click here to read the FRA’s preliminary investigation.

Oil Leaked from shipwreck near Newfoundland

By Kim Smiley

On March 31, 2013, oil was reported in Notre Dame Bay, Newfoundland.  Officials traced the source of the oil back to a ship, the Manolis L, that sank in 1985 after running aground.  The Manolis L is estimated to have contained up to 462 tons of fuel and 60 tons of diesel when it sank and much of that oil is believed to still be contained within the vessel.  Officials are working to ensure the oil remains contained, but residents of nearby communities who rely on tourism and fishing are concerned about the potential for more oil to be released into the environment.

A Cause Map, a visual format for performing root cause analysis, can be built to better understand this issue.  There are three steps in the Cause Mapping process. The first step is to fill out an Outline with the basic background information along with listing how the problem impacts the goals.  There is also space on the Outline to note the frequency of the issue.  For this example, 2013 was the first time oil was reported to be leaking from this particular sunken ship, but there have been 700 at-risk sunken vessels identified in Canadian waters alone.  It’s worth noting this fact because the amount of resources a group is willing to use to address a problem may well depend on how often it is expected to occur.  One leaking sunken ship is a different problem than potentially having hundreds that may require action.

The second step is to perform the analysis by building the Cause Map.  A Cause Map is built by asking “why” questions and laying out the answers to visually show the cause-and-effect relationships.  Once the causes have been identified, the final step is to develop and implement solutions to reduce the risk of similar problems occurring in the future.  Click on “Download PDF” to view an Outline and intermediate level Cause Map for this problem.

In this case, the environmental goal is clearly impacted because oil was released into the environment.  Why? Oil leaked out of a sunken ship because a ship had sunk that contained a large quantity of oil and there were cracks in the hull.  The hull of this particular ship is thin by modern standards (only a half-inch) and it has been sitting in sea water for the last 30 years.  A large storm hit the region right before oil was first reported and it is believed that the hull (already potentially weakened by corrosion) was damaged during the storm.  The Coast Guard identified two large cracks in the ship that were leaking oil during their investigation.

Once the causes of the issue have been identified, the final step is to implement solutions to reduce the risk of future problem.  This is where a lot of investigations get tricky.  It is often easier to identify the problem than to actually solve it. It can be difficult to determine what level of risk is acceptable and how many resources should be allotted to an issue.  The cracks in the hull of the Manolis L have been patched using weighted neoprene sealants and a cofferdam has been installed to catch any oil that leaks out.  The vessel is being monitored by the Canadian Coast Guard via regular site visits and aerial surveillance flights. But the oil remains in the vessel so there is the potential that it could be released into the environment.

Many local residents are fighting for the oil to be removed from the sunken ship, rather than just contained, to further reduce the risk of oil being released into the environment. But removing oil from a sunken ship is very expensive.  In 2013, it cost the Canadian Coast Guard about $50 million to remove oil from a sunken ship off the coast of British Columbia. So far, officials feel that the measures in place are adequate and that the risk doesn’t justify the cost of removing the oil from the vessel. If they are right, the oil will stay safely contained at a fraction of the cost of removing it, but if they are wrong there could be lasting damage to local communities and wildlife.

In situations like this, there are no easy answers.  Anybody who works to reduce risk faces similar tradeoffs and generally the best you can do is to understand a problem as thoroughly as possible to make an informed decision about the best use of resources.

Train Derails in West Virginia

By Kim Smiley

On February 16, 2015, a train hauling 109 tank cars of crude oil derailed in Mount Carbon, West Virginia.  It has been reported that 27 tank cars in the train derailed.  Some of the tank cars were damaged and released an unknown amount of crude oil, resulting in a large fire.  Hundreds of families in the surrounding area were evacuated, but only one injury was reported.

The accident investigation is still ongoing, but what information is known can be used to build an initial Cause Map, a visual format for performing a root cause analysis.  The Cause Map can be easily expanded as needed to document additional information as it becomes available.

The first step in the Cause Mapping process is to fill in an Outline with the basic background information for the issue as well as how the overall goals were impacted. In this example, there were many impacted goals.  The safety goal is impacted because there was an injury, the property goal is impacted because of the damage to the train, the environmental goal is impacted because of the release of oil, etc.  Once the Outline is complete, the Cause Map itself is built by starting with an impact to a goal, asking “why” questions, and laying out all the causes that contributed to an issue.

The significant aftermath of this derailment is known, but little has been released about what specifically caused the train to derail.  It was snowing heavily at the time of the accident, which may have played a role, but since more evidence is needed, a “?” is included on the Cause Map.  Data from the digital data recorder has shown that the train was not speeding at the time of the accident, which has been a factor in previous derailments.  Another fact worth noting is that the damaged train cars were a newer design that incorporated modern safety upgrades.

With so many unknowns, the Federal Railroad Administration is conducting a full-scale investigation to determine exactly what happened.  The damaged tank cars, track, and other components along with relevant maintenance and inspection records will be all be analyzed to better understand this derailment.

Unfortunately, crude oil train accidents are predicted to become increasingly common as the volume of flammable liquids being transported by rail continues to rise.  According to the Association of American Railroad, 40 times more oil was transported by rail in 2012 than in 2008. Hopefully, the lessons learned from this derailment can be used to help reduce the risk of future rail accidents.

To view the Outline and initial Cause Map for this accident, click on “Download PDF” above.