Tag Archives: derail

New Regulations Aim to Reduce Railroad Crude Oil Spills

By ThinkReliability Staff

The tragic train derailment in Lac-Mégantic, Quebec on July 6, 2013 (see our previous blog on this topic) ushered in new concerns about the transport of crude oil by rail in the US and Canada. Unfortunately, the increased attention has highlighted a growing problem: spills of crude oil transported via rail, which can result in fires, explosions, evacuations, and potentially deaths. (Luckily there have been no fatalities since the Lac-Mégantic derailment.) According to Steve Curwood of Living on Earth, “With pipelines at capacity the boom has lead a 4,000 percent increase in the volume of crude oil that travels by rail, and that brought more accidents and more oil spills in 2014 than over the previous 38 years.”

This follows a period of increases in railroad safety – according to the US Congressional Research Service, “From 1980 to 2012, railroads reduced the number of accidents releasing hazmat product per 100,000 hazmat carloads from 14 to 1.” From October 19, 2013 to May 6, 2015, there were at least 12 railcar derailments that resulted in crude oil spills. (To see the list of events, click on “Download PDF” and go to the second page.)

Says Sarah Feinberg, acting administrator of the Federal Railroad Administration (FRA), “There will not be a silver bullet for solving this problem. This situation calls for an all-of-the-above approach – one that addresses the product itself, the tank car it is being carried in, and the way the train is being operated.” All of these potential risk-reducing solutions are addressed by the final rule released by the FRA on May 1, 2015. (On the same day, the Canadian Ministry of Transport released similar rules.) In order to view how the various requirements covered by the rule impact the risk to the public as a result of crude oil spills from railcars, we can diagram the cause-and-effect relationships that lead to the risk, and include the solutions directly over the cause they control. (To view the Cause Map, or visual root cause analysis, of crude oil train car derailments, click on “Download PDF”.)

The product: Bakken crude oil (as well as bitumen) can be more volatile than other types of crude oil and has been implicated in many of the recent oil fires and explosions. In addition to being more volatile, the composition (and thus volatility) can vary. If a material is not properly sampled and characterized, proper precautions may not be taken. The May 1 rule incorporates a more comprehensive sampling and testing program to ensure the properties of unrefined petroleum-based products are known and provided to the DOT upon request.   (Note that in the May 6, 2015 derailment and fire in Heimdahl, North Dakota, the oil had been treated to reduce its volatility, so this clearly isn’t an end-all answer.)

The tank car: Older tank cars (known as DOT-111s) were involved in the Lac-Mégantic and other 2013 crude oil fires. An upgrade to these cars, known as CPC-1232, hoped to reduce these accidents. However, CPC-1232 cars have been involved in all of the issues since 2013. According to Cynthia Quarterman, former director of the Pipeline and Hazardous Materials Safety Administration, says that the recent accidents involving the newer tank cars “confirm that the CPC-1232 just doesn’t cut it.”

The new FRA rule establishes requirements for any “high-hazard flammable train” (HHFT) transported over the US rail network. A HHFT is a train comprised of 20 or more loaded tank cars of a Class 3 flammable liquid (which includes crude oil and ethanol) in a continuous block or 35 or more loaded tank cars of a Class 3 flammable liquid across the entire train. Tank cars used in HHFTs constructed after October 1, 2015 are required to meet DOT-117 design criteria, and existing cars must be retrofitted based on a risk-based schedule.

The way the train is being operated: The way the train is being operated includes not only the mechanics of operating the train, but also the route the train takes and the notifications required along the way. Because the risk for injuries and fatalities increases as the population density increases, the rule includes requirements to perform an analysis to determine the best route for a train. Notification of affected jurisdictions is also required.

Trains carrying crude oil tend to be very large (sometimes exceeding one mile in length). This can impact stopping distance as well as increase the risk of derailment if sudden stopping is required. To reduce these risks, HHFTs are restricted to 50 mph in all areas, and 40 mph in certain circumstances based on risk (one of the criteria is urban vs. rural areas). HHFTs are also required to have in place a functioning two-way end of train or distributed power braking system. Advanced braking systems are required for trains including 70 or more loaded tank cars containing Class 3 flammable liquids and traveling at speeds greater than 30 mph, though this requirement will be phased in over decades.

It is important to note that this new rule does not address inspections of rails and tank cars. According to a study of derailments from 2001 to 2010, track problems were the most important causes of derailments (with broken rails or track welds accounting for 23% of total cars derailed). A final rule issued January 24, 2014 required railroads to achieve a specified track failure rate and to prioritize remedial action.

To view the May 1 rule regarding updates to crude-by-rail requirements, click here. To view the timeline of incidents and the Cause Map showing the cause-and-effect relationships leading to these incidents, click “Download PDF”.

Freight Train Carrying Crude Oil Explodes After Colliding With Another

By Kim Smiley

On Monday, December 30, 2013, a 106-car freight train carrying crude oil derailed in North Dakota and violently exploded after colliding with another derailed train that was on the tracks.  No injuries were reported, but the accident did cause an impressive plume of hazardous smoke and major damage to two freight trains.

The investigation into the accident is ongoing and it’s still unknown what caused the first train to derail. Investigators have stated that it appears that there was nothing wrong with the railroad track or with the signals.  It is known that a westbound freight train carrying grain derailed about 2:20 pm.  A portion of this train jumped onto the track in front of the eastbound train.  There wasn’t enough time for the mile long train loaded with crude oil to stop and it smashed into the grain train, causing the eastbound oil train to derail.  (To see a Cause Map of this accident, click on “Download PDF” above.)

Train cars carrying crude oil were damaged and oil leaked out during the accident.  The train accident created near ideal conditions for an explosion: sparks and a large quantity of flammable fluid.   The fire burned for more than 24 hours, resulting in a voluntary evacuation of nearby Casselton, North Dakota due to concerns over air quality.  The track was closed for several days while the initial investigation was performed and the track was cleaned up.

The accident has raised several important issues.  The safety of the train cars used to transport oil has been questioned.  Starting in 2009, tank train cars have been built to tougher safety standards, but most tank cars in use are older designs that haven’t been retrofitted to meet the more stringent standards.  This accident, and others that have involved the older design tank cars in recent year, have experts asking hard questions about their safety and whether they should still be in use.

The age of the train cars is particularly concerning since the amount of oil being transported by rail has significantly expanded in result years.  Around 9,500 carloads of oil were reportedly transported in 2008 and nearly 300,000 carloads were moved during the first three quarters of 2013.  The oil industry in North Dakota has rapidly expanded in recent years as new technology makes oil extraction in the area profitable.   North Dakota is now second only to Texas in oil production since the development of the Bakken shale formation.  Pretty much the only way to transport the crude oil extracted in North Dakota is via rail.  There isn’t a pipeline infrastructure or other alternative available.

And most of the time, transporting oil via freight train is a safe evolution.  The Association of American Railroads has reported that 99.99 percent of all hazardous materials shipped by rail reach the destination safely.  But it’s that 0.01 percent that can get you in trouble.  As a nation, we have to decide if where we are at is good enough or if it’s worth the money to require all tank cars used to transport oil to be retrofitted to meet the newest safety standards, a proposition that isn’t cheap.

50 Presumed Dead in Canadian Train Disaster

By ThinkReliability Staff

A tragic accident devastated the Canadian town of Lac-Mégantic, Quebec on July 6, 2013.  Much about the issue is still unknown.  When investigating an incident such as this, it can be helpful to identify what is known and information that still needs to be determined.

What is known: a 73-car train was parked in Nantes, Quebec, uphill from Lac-Mégantic.  Of the cars, 72 contained crude oil.  The train was left unattended and late the evening of July 5, 2013, a fire broke out in the locomotive.  While the fire department of Nantes was putting out the fire, they turned off the train’s main engine.  Less than two hours later, the train rolled down the track and derailed in Lac-Mégantic.  After subsequent explosions and long-burning fires, 24 people have been confirmed dead.  26 more are missing.   Much of the town and the train – and the evidence in it – is destroyed.

What is not known: The cause of the initial fire on the train is not known.  Whether or not the fire department should have explicitly notified the train engineer that the main engine had been shut off is not known.  What happened that allowed the train to roll downhill is unknown.

With this number of unknowns, it is helpful to visually lay out the cause-and-effect relationships that occurred, and what impact they had on those affected.  This can allow us to see the holes in our analysis and identify where more evidence is needed.  Once as much evidence as possible has been obtained, additional detail can be added to the cause-and-effect relationships.  Ensuring that all causes related to the incident are included will provide the largest number of solutions, allowing us to choose the most effective.  We can do all this in a Cause Map, or visual root cause analysis.

The first step in using any problem solving methodology is to determine the impact caused by the incident.  In this case, the deaths (and assumed deaths) are our most significant impact.  Also addressed should be the crude oil leakage (though much of it was likely burned off), the high potential for lawsuits, the possible impact on rail shipments, the destruction of the town and the train, and the response and cleanup efforts.  These form the initial “effects” for our cause-and-effect analysis.

Asking “Why” questions allows us to further develop the cause-and-effect relationships.  We know that for the train to roll backwards down the hill, both sets of brakes had to be ineffective.  The railway company has stated that the air brakes released because the main engine had been shutdown.  However, according to the New York Times, “since the 19th century, railways in North America have used an air-braking system that applies, rather than releases, freight car brakes as a safety measure when it loses pressure.”  This certainly makes more sense than having brakes be dependent on engine power.

The hand brakes functioned as backup brakes.  The number of cars (which, when on a hill, affects the force pulling on the train) determines the number of handbrakes required.  In this case, the engineer claims to have set 11 handbrakes, but the rail company has now stated that they no longer believe this.  No other information – or evidence that could help demonstrate what happened to either sets of brakes – has been released.

Also of concern are the style of train cars – believed to be the same that the NTSB identified in a report on a previous train accident as “subject to damage and catastrophic loss of hazardous materials”.

In a tragedy such as this one, the first priority is to save and preserve human lives in every way possible.  However, once that mission is complete, evidence-gathering to determine what happened is the next priority.  As evidence becomes available it is added directly to the Cause Map, below the cause it supports or refutes.  Additional causes are added as necessary with the goal of determining all the cause-and-effect relationships to provide the largest supply of possible solutions to choose from.

The company involved has already stated it will no longer leave trains unattended.  That should be a big help but, given the consequences of this event, other solutions should be considered as well.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.