Hindenburg Crash – May 6, 1937

By ThinkReliability Staff

On May 6th, 1937, the Hindenburg burst into flames over the Lakehurst, NJ Naval Base, after completing a successful trip across the Atlantic.  35 of the 97 passengers (and one of the ground crew) were killed.  The Hindenburg itself was a total loss, and the popularity of airships never recovered after the accident.

The loss of 36 lives and the loss of the Hindenburg were both caused by the fire aboard. The loss of popularity of airships was caused by both the loss of the Hindenburg, and by the loss of lives.  The next question to ask is “Why did the fire occur?”

For the Hindenburg, this is where things start to get interesting.  There are three separate theories about why the fire started.  There are people who believe very strongly in each.   Luckily for us, the beauty of the Cause Map form of a root cause analysis is that we can use it even if we haven’t determined which theory is correct.

The first theory is that the fire started from sabotage.  Because the Hindenburg was frequently used as a Nazi propaganda tool, some thought it was almost too easy of a target for sabotage from anti-Nazi activists (who included in their number the designer of Hindenburg, Dr. Hugo Eckener.)  There was even a “suspicious” character who survived the crash, a German acrobat living in America.  However, eventually the FBI dismissed the idea of sabotage as a “red herring.”

Another theory is that the fire began when static electricity ignited the flammable cover of the airship.  The major proponent of this theory, Dr. Addison Bain, has run tests on pieces of the Hindenburg cover preserved from the wreck site.  (This was not until 1994.)  He has also found supporting evidence from historic records of the Zeppelin company.

The other theory is that static electricity ignited a flammable hydrogen-oxygen mixture.  This was the original cause attributed to the disaster by the U.S. Department of Commerce’s root cause analysis investigation after the crash.  There are also people who claim that Dr. Bain’s theory is physically impossible, and do not specifically champion a cause, but treat this one as the most likely.

Note that we’re not espousing a theory – we are just recording all of the possibilities.  Once we have done that, the Cause Map allows us to find solutions for any potential causes.  Once we have all the theories mapped out, we can use the Cause mMp as a resource to determine the solutions that are most helpful, or continue our root cause analysis investigation to determine which causes are most likely.