Tag Archives: fire

Passengers trapped in smoke-filled metro train

By Kim Smiley

A standard commute quickly turned into a terrifying ordeal for passengers on a metro train in Washington, DC the afternoon of January 12, 2015.  Shortly after leaving a station, the train abruptly stopped and then quickly filled with thick smoke. One passenger died as a result of the incident and 84 more were treated for injuries, predominantly smoke inhalation.

This incident can be analyzed by building a Cause Map, a visual root cause analysis.  A Cause Map visually lays out the cause-and-effect relationships to show all the causes that contributed to an issue.  The first step in the Cause Mapping process is to define the problem by filling in an Outline with the basic background information as well as documenting how the issue impacts the overall goals.  For this example, the safety goal is clearly impacted by the passenger death and injuries.  A number of other goals should also be considered such as the schedule goal which was impacted by significant metro delays.  (To view an Outline and initial Cause Map for this issue, click on “Download PDF” above.)

So why were passengers injured and killed?  Passengers were trapped on the train and it filled with smoke.  It is unclear why the train wasn’t able to back up to the nearby station once the smoke formed and investigators are working to learn more.  (Open issues can be documented on the Cause Map with a question mark to indicate that more evidence is needed.)  There are also questions about the time emergency workers took to reach the train to aid in evacuation of passengers so this is another area that will require more information to fully understand. By some account, it took 40 minutes for firefighters to reach the trapped passengers.

Initial reports are that smoke was caused by an electrical arcing event, likely from the cables supporting the high voltage third rail used to power the trains. The specifics of what caused the arc are being investigated by the National Transportation Safety Board and will be released when the investigation is concluded.  What is known is that there was significant smoke caused by the arc, but no fire.  There have also been reports of water near the rails that may have been a factor in the arcing.

Eyewitness accounts of this incident are horrifying.  People had little information and didn’t know whether there was fire nearby at first.  They were told to remain on the train and await rescue, but the rescue took some time, which surely felt longer to the scared passengers.  It won’t be clear what solutions need to be implemented to prevent similar problems in the future until the investigation is complete, but I think we can agree that metro officials need to work to ensure passenger safety going forward.

Hundreds Saved by Arduous Helicopter Rescue From Ferry Fire

By Kim Smiley

In a grueling rescue effort, 427 people were saved from a passenger ferry, Norman Atlantic, which caught fire December 28, 2014 off the coast of Greece.  About 150 people managed to escape the fire in lifeboats, but the remaining passengers were lifted to safety via helicopter.  Gale force winds, heavy rain and darkness all combined to make a difficult rescue operation even more daunting. Ten people died as a result of the accident with few details known about what caused the fatalities.

A Cause Map, a visual root cause analysis, can be built to analyze this incident.  The investigation is just beginning and there are still many unknowns, but an initial Cause Map can be begun that can easily be expanded to incorporate new information as it becomes available.  Even the exact number of people onboard has been difficult to determine because there were several stowaways discovered during the rescue operations that weren’t listed on the ship’s manifest.

What is known is that the fire began early in the morning of December 28th and 427 people were rescued off the ferry. Early reports are that the fire started on the parking deck where there were tanker trucks filled with oil.  Witness accounts indicate that the fire spread fairly quickly, leading to speculation that the fire doors failed.  As the fire progressed, the ship lost power.  Once power was gone, the lifeboats were useless because they require electricity to be lowered.  The heat from the fire drove passengers to the top deck and bridge where they were bombarded by cold, rain and thick smoke for many miserable and likely terrifying hours.  Helicopters pulled passengers to safety one by one, working through the windy night with night vision goggles.

In a stark contrast to the South Korea ferry that capsized off Byungpoong in April, the captain was the last person to leave the Norman Atlantic. The rescue effort was truly impressive.  As Greek Prime Minister Antonis Samaras said, the “massive and unprecedented operation saved the lives of hundreds of passengers following the fire on the ship in the Adriatic Sea under the most difficult circumstances.”

The Italian Transport Ministry has seized the vessel pending an investigation into the fire and thorough inspection of the ship.  Whenever a disaster of this magnitude occurs, it is worth understanding exactly what happened and reviewing what could be done better in the future.  There will be many lessons to learn from this incident, both in how to prevent and fight shipboard fires and how to perform helicopter rescues at sea.

To view a high level Cause Map of this incident, click on “Download PDF” above.

Dreamliner fire: firefighter injured when battery explodes

By ThinkReliability Staff

On January 7, 20 13, smoke was discovered on a recently deplaned Boeing 787 Dreamliner. The recently released National Transportation Safety Board (NTSB) investigation found that an internal short circuit within a cell of the auxiliary power unit (APU) battery spread to adjacent cells and led to a thermal runway which released fire and smoke aboard the aircraft. A firefighter responding to the fire was injured when the battery exploded. Only 9 days later, an incident involving the main battery, which is the same model as that used for the APU, resulted in an emergency landing of another Boeing 787. As a result of these two incidents, the entire Dreamliner fleet was grounded for 3 months for the ensuing investigation and incorporation of modifications. (See our previous blog about the grounding.) Before the fleet was allowed to resume operations, certain protective modifications were required to be implemented.

The investigation determined that the internal short circuit, which provided the initial heat source for the fire within the battery cell, could not be definitively determined due to severe damage in the area, but was potentially related to defects discovered during the manufacturing process. (Defects that could result in this type of short circuit were found on similar components.) The investigation found issues within the manufacturing process and with the oversight of subcontractors by contractors, as opposed to the manufacturers themselves.

The high temperatures resulting from the battery fire allowed it to spread to adjacent cells. Localized high temperatures were found greater than allowable at times of maximum current discharge, such as the APU startup, which had recently occurred. The high temperatures were not detected by the monitoring system (the impact could have been minimized had the issue come to light sooner), because temperatures were not monitored at individual cells, but only on two cell bus bars.

The systems were not prepared to deal with a spreading fire as the design of the aircraft assumed that a short circuit internal to the cell would not propagate. The NTSB determined that the guidance provided to determine key assumptions was ineffective and that the validation of these assumptions had failed. Likely related to this assumption, the safety assessment and testing on the battery system was ineffective. The rate of occurrence of cell venting (the spreading of fire from cell to cell) was calculated by the manufacturer to be 1 in 10 million flight hours. The two occurrences that resulted in the grounding both involved cell venting and occurred while the 787 fleet had less than 52,000 flight hours.

Immediate actions that were required by the NTSB prior to a return to flight were to enclose the battery case, vent from the interior of the enclosure containing the battery to the exterior of the plane (keeping smoke out of the occupied spaces), and modify the battery to minimize the most severe effects from an internal short circuit. The NTSB also made multiple safety recommendations to the manufacturer, subcontractor and the Federal Aviation Administration (FAA).

One of these recommendations was to ensure that assumptions are validated. According to the NTSB report, “Validation of assumptions related to failure conditions that can impact safety is a critical step in the development and certification of an aircraft. The validation process must employ a level of rigor that is consistent with the potential hazard to the aircraft in case an assumption is incorrect.” This statement is true for any object that’s manufactured. Just replace the word “aircraft” with whatever is being manufactured, such as “car” or “pacemaker”. (See another disaster that resulted from not validated assumptions: the collapse of the I-35 Bridge.)

Click on “Download PDF” above to view a high level Cause Map of this issue.

Two Firefighters Killed by Rogue Welding

By ThinkReliability  Staff

On March 26, 2014, two firefighters were killed when trapped in a basement by a quickly spreading, very dangerous fire in Boston, Massachusetts. These firefighters appear to have been the first to succumb to injuries directly caused by fire while on the job in 2014. The company that was found responsible for starting the fire has been fined by OSHA for failure to follow safety procedures. Says Brenda Gordon, Occupational Safety and Health Administration (OSHA)’s director for Boston and southeastern Massachusetts, “This company’s failure to implement these required, common-sense safeguards put its own employees at risk and resulted in a needless, tragic fire.”

Every incident that results in a fatality should be carefully investigated. Investigations are used not only for liability and regulatory reasons, but also to develop solutions to reduce the risk of similar fatalities happening in the future. Investigating an incident such as this in a Cause Map, or visual root cause analysis, allows for better solutions by determining all the cause-and-effect relationships that led to the issue.

First it’s important to define how goals were impacted in order to define the scope of the problem. In this case, two firefighters were killed, which impacts the safety goal. In addition, the spread of the fire, damage of nearby buildings and associated civil lawsuits are also impacts to the goals. The OSHA fine of $58,000 for 10 violations of workplace safety regulations is an impact to the regulatory goal. The response to the fire, as well as the multiple investigations, are impacts to the labor/time goal.

Beginning with an impacted goal and asking “Why” questions develops cause-and-effect relationships that explain how the incident occurred. In this case, the firefighters perished when they were trapped by fire. The firefighters were in the basement of a residential building to rescue occupants from a fire, and the fire was so hot and dangerous that the firefighters could not exit, and other firefighters were unable to come to their rescue. Extremely windy conditions spread the fire caused by a welding spark that struck a nearby wood shed.   OSHA investigators note that the company performing the welding did not follow safety precautions (including having a fire watcher and moving welding away from flammable objects) that would have reduced the risk for fire. They cited the lack of an effective fire prevention/ protection program and a lack of training in workplace and fire safety. View the Cause Map by clicking “Download PDF” above.

Ideally the fine levied by OSHA will encourage the company involved to increase its methods of fire protection, not only to protect its own workers, but also to protect the public. In addition, the Boston Fire Department is conducting an internal review to improve firefighter safety. Says Steve MacDonald, spokesman, “What they’re doing is looking at policies and procedures. They’re reviewing everything, reviewing weather, radio communications, anything and everything having to do with the fire.”

On July 5th, another firefighter died after being trapped in a building while looking for occupants during a fire in Brooklyn, New York. On July 9th, a firefighter in Houston, Texas was killed of smoke inhalation inside a burning building. A firefighter died in a building collapse due to fire in New Carlisle, Indiana on August 5, 2014, making a total of 5 firefighters who have died as a direct result of smoke/fire injuries while on the call of duty so far in 2014. In 2013, a total of 30 firefighters were killed on the job, most as the result of the Yarnell Hill fire in Arizona.

Fire at FAA Facility Sparks Flight Havoc

By Kim Smiley 

On Friday September 26, 2014, air traffic was grounded for hours in the Chicago region following a fire in a Federal Aviation Administration facility in Aurora, Illinois. The snarl of flight issues impacted thousands of travelers in the days following the fire as airports struggled to deal with the aftermath of more than 4,000 canceled flights and thousands more delayed.

A Cause Map, a format for performing a visual root cause analysis, can be used to analyze this issue.  To build a Cause Map, the first step is to define the problem by determining how the overall organizational goals are impacted.  In this example, there is a significant customer service impact because thousands of passengers had their travel plans disrupted. The flight cancelations and delays can be considered an impact to the production/schedule goal.  The amount of time and energy needed to address the flight disruptions along with the investigation into the issue would also be impacts to the labor goal.  Once the impacts to the goals are determined, the Cause Map is built by asking “why” questions and visually laying out the answers to show the cause-and-effect relationship.

Thousands of flights were canceled because air traffic control was unable to support them.  Air traffic control couldn’t perform their usual function because there was a fire in a building that provided air traffic support for a large portion of the upper Midwest and it wasn’t possible to quickly provide air traffic support from another location. Focusing on the fire itself first, the fire appears to have been intentionally set by a contractor who worked in the building.  He was able to bring in flammable materials and start a fire without anyone stopping him.  Police are still investigating his motives, but he has been charged with a felony. The building was evacuated once the fire was discovered and employees obviously couldn’t perform their usual duties during that time.  Additionally, the fire damaged equipment so air traffic control functionality could not be quickly restored once the initial crisis was addressed and it was safe to return to the building.

The second portion of the issue is that there wasn’t a way to support air traffic once the building was evacuated.  Once the fire occurred, all flights were grounded because there wasn’t air traffic control support and it was not possible to quickly get air traffic moving again.

The final step in the Cause Mapping process is to develop and implement solutions to reduce the risk of a similar problem.  Law makers have called for an investigation into this issue to see if there is sufficient redundancy in the air traffic control system.  In an ideal situation, a fire or other crisis at any single location would not cripple US air traffic to the extent that this issue did.  The investigation is also looking into the fire and reviewing the security at the facility to see if there should be stricter restrictions put in place, such as ensuring that no employees work alone or searching bags as workers access the site.

This situation is also a strong reminder that organizations need to have a plan in place of what to do in case a failure occurs.  There was a previous fire scare at this same location earlier in 2014 when a smoking ceiling fan resulted in an evacuation and flight delays (see previous blog) that should have prompted some serious consideration of what the contingency plan should be if this facility was ever out of commission.

I was one of those people standing in line for hours at an airport on Friday morning after my flight was canceled.  And I for one would love to see the air traffic control system become more robust and better able to deal with the inevitable hiccups that occur.  It’s impossible to prevent every potential problem and another intentional fire in a FAA facility seems pretty farfetched, but it is possible to have a better plan in place to deal with issues that may arise.  The potential consequences of any single failure can be limited with a good plan and quick implementation of that plan.

Freight Trains Collide Head-On in Arkansas

By Kim Smiley

On August 17, 2014, two freight trains collided head-on in Arkansas, killing two and injuring two more.  The accident resulted in a fire after alcohol spilled from a damaged rail car ignited, prompting evacuation of about 500 people from nearby homes.  The trains were carrying toxic chemicals, but none of the cars carrying the toxic chemicals are believed to have been breached during the accident.

The National Transportation Safety Board (NTSB) is currently investigating this accident, but an initial Cause Map, or visual root cause analysis, can still be built to help document and illustrate the information that is known.  One of the benefits of a Cause Map is that it can easily be expanded to incorporate information as it becomes available.  The first step of the Cause Mapping process is to fill in an Outline with the basic information for an incident.  In addition, anything that was different at the time of accident is listed.  How the incident impacts the overall goals is also documented on the bottom of the Outline.

Like many incidents, there are a number of goals that were impacted by this train collision.  The safety goal is obviously impacted by two fatalities and injuries.  The property goal is impacted because of the significant damage to the trains and freight.  The labor/time goal is impacted because of the response effort and investigation that are required as a result of the accident. Potential impacts or near misses should also be documented so the potential release of toxic chemicals is considered an impact to the environmental goal.

The second step is to perform the analysis by building the Cause Map.  To build the Cause Map, start with one impacted goal and ask “why” questions.  Each answer is added to the Cause Map.  Each impacted goal should be considered and the cause boxes should all connect at some location on the Cause Map.  Starting with the safety goal in this example, the first question would be: why were two people killed?  This occurred because there was a train collision.  The trains collided because they were traveling toward each other on the same track.  No details have been released about how the trains ended up on the same track.  The trains’ daily recorders (which provide information about the trains’ speed, braking and throttle) have been found and will be analyzed by investigators. The NTSB has stated that they will be looking into a number of factors such as the train signals and fatigue since the accident occurred late at night.

The final step in the Cause Mapping process is to develop solutions that can be implemented to reduce the risk of a similar problem recurring in the future.  Since the investigation is ongoing, talk of solutions is premature at this point.  Once more is known about the causes that contributed to this issue, the lessons that are learned can be used to develop solutions.


By ThinkReliability Staff

On June 18, 2013, the manufacturer of Jeep Grand Cherokee and Liberty sport-utility vehicles (SUVs) recalled 1.56 million vehicles due to a risk of fuel tank fires during rear-end collisions. At the time of the recall, the National Highway Traffic Safety Administration (NHTSA) linked 51 deaths to the fuel tank fires. Although a fix was accepted in January, parts won’t be available to owners until August.

The NHTSA is concerned about this delay. Says O. Kevin Vincent, NHTSA Chief Counsel, “For many owners, a recall remedy deferred by parts availability easily becomes a defect remedy denied. Moreover, additional delays in implementing this recall with inure to Chrysler’s benefit at the expense of vehicle owner safety.”

Even without full information, a Cause Map can begin to develop the cause-and-effect relationships that led to an issue. As more information is provided, more detail can be added to the Cause Map.

The analysis begins by determining the impacts to the organization’s goals. In this case, the safety goal is impacted by the 51 deaths that were determined to have resulted from gasoline fires as a result of the recall issue as well as 4 additional deaths that have occurred since the recall, according to the executive director of watchdog group Center for Auto Safety. The delay in the repairs for the recall issue can also be considered an impact to the customer service and production goals.

Beginning with one of the impacts to the goals, asking “why” questions builds the Cause Map, a visual root cause analysis. Beginning with the deaths that have occurred as a result of the recall issue since the recall took place, asking “why” questions helps determine that the deaths resulted from the issue at the heart of the recall (the increased risk for gasoline fires) and the delay in repairs from the recall. (Had the repairs been implemented more quickly, the number of deaths as a result of the issue may have been reduced.)

The increased risk of gasoline fires occurs from an increased risk of fuel tank rupture in the event of a rear-end collision because the fuel tank, in an unusual design, is located behind the rear-most axle, which provides inadequate protection. The fix for the recall issue is to add a trailer hitch, which provides an additional distance between another vehicle and the fuel tank in a rear-end collision (but it should be noted will protect only against “lower to medium-speed rear-end crashes”).

Although the addition of trailer hitches was recommended by the manufacturer at the time of the recall, a supplier was not selected until December. The manufacturer has stated that it was finding new suppliers to deal with the higher-than-normal demand for these parts. It’s also possible that the manufacturer was waiting for the NHTSA to approve the fix, which occurred in January. The NHTSA was doing additional testing to ensure that the fix would be effective. After the supplier was selected, it took nearly two months for a purchase order to be issued and five months for production to begin. The reasons for this part of the delay are unknown, and are expected to be provided to the NHTSA near-term.

The delay starting production is one thing; another concern is the amount of time it will take before enough parts are available. The supplier originally selected could manufacture 1,323 Liberty trailer hitches and 882 Grand Cherokee trailer hitches a day, meaning that if all 1.56 million vehicle owners participated in the recall, it would take 4.7 years to produce enough trailer hitches. Currently, legal requirements are only that manufacturers are required to make repairs in a “reasonable time”, although most manufacturers begin repairs within about 60 days of notifying the NHTSA. This case may force the NHTSA to define what a “reasonable time” actually is.

The latest update from Chrysler is that the trailer hitch supplier has increased production capacity and will be able to meet the demand by March of 2015. Chrysler also said that the NHTSA over-estimated the number of hitches required for the recall because the calculations didn’t account for vehicles that are no longer in use or those already equipped with hitches.

To view a timeline, Outline and Cause Map of this issue, please click “Download PDF” above. Or, click here to learn more.



Extensive Fire on USS George Washington Placed Crew at Risk

By ThinkReliability Staff

When fire broke out in 2008 on aircraft carrier USS George Washington in an unmanned space that was being used to improperly store flammable materials, it took more than 8 hours to find the source of, and extinguish, the fire. In the Navy’s investigation report, Admiral Robert F. Willard, commander of the US Pacific Fleet, stated “It is apparent from this extensive study that there were numerous processes and procedures related to fire prevention and readiness and training that were not properly functioning. The extent of damage could have been reduced had numerous longstanding firefighting and firefighting management deficiencies been corrected.”

The processes and procedures that were implicated in the investigation of the fire can be examined in a Cause Map, or a visual root cause analysis. This process begins by identifying the goals impacted. In this case, the primary goal impacted was the safety goal. Thirty-seven sailors were injured; one was seriously burned. There were no fatalities. In addition, the damage to the ship was estimated at $70 million and left the ship unusable for 3 months.

Beginning with the impacted safety goal, asking ‘Why’ questions allows us to develop the cause-and-effect relationships that led to those impacted goals. In this case, the injuries to sailors resulted from the extensive fire aboard ship. In addition, some of the affected sailors (including the sailor who was seriously burned) did not have adequate protective clothing. Specifically, liners worn underneath firefighting gear were not available in one repair locker because they were being laundered. Both the fire and the inadequate protective gear were causally related to the injuries so they are both included on the Cause Map and joined with ‘and’.

Asking additional ‘why’ questions adds more detail to the Cause Map. When investigating a fire, it’s important to include the factors that resulted in the initiation of the fire (heat, fuel and oxygen) as well as those that allowed the fire to spread. In this case, the ignition (or heat) source was believed to be a cigarette butt. On-scene evidence showed that smoking was occurring in the area, against regulation. The ship was found to have inadequate training regarding the smoking policy and inadequate control over the locations where smoking was occurring, because regular zone inspections were not being held.

The initial fuel source was determined to be refrigerant oil and other flammable materials improperly stored in an unmanned space where the fire began. The oil was not turned in as required by procedure over a concern about the difficulty of retrieving it. Because the oil was never entered into the inventory control system, the storage discrepancy was not noted. The unmanned space in which it was stored was not inspected. Unmanned spaces were not included in zone inspections and the area had not been designed as a tank or void to be identified in the void and tank inspection.

Once a fire breaks out, the speed in which the source is found and extinguished has the most impact on the safety of personnel. In this case, the source of the fire was not found for eight hours.   Not only did the fire begin in an unmanned area, the drawings showing the layout of the ship were inaccurate, because the ship was in the midst of alterations.

Developing the causes the resulted in the impacted goals allows for identification of all the processes and procedures that need to be re-examined to reduce risk of recurrence. In this case, the report identified multiple processes and procedures that were re-evaluated in the wake of the disaster, including those for hazardous material storage, training, inspection and firefighting.

To learn more, click here to read the Navy investigation report. To view a one-page overview of the Outline and Cause Map, please click on “Download PDF” above.

Improper Fireplace Installation Results in Firefighter’s Death

By Mark Galley

While battling a fire in a mansion in Hollywood Hills, California on February 16, 2011, a firefighter was killed (and 5 others seriously injured) when the roof collapsed.  As a result of the firefighter’s death, the owner/ architect of the home was convicted of involuntary manslaughter.  He is scheduled to serve 6 months and then will be deported.

The fire wasn’t arson, but the owner/ architect was considered responsible due to the installation of an outdoor-only fireplace on the top floor of his home.  Because of the legal issues surrounding this case, it’s important to carefully determine and clearly present all of the causes that led to the fire and the firefighter’s death.

We can capture information related to this issue within a Cause Map, or visual root cause analysis.  A Cause Map begins with the impacted goals, allowing a clear accounting of the effects from the issue.  The firefighter’s death is an impact to the safety goal, as are the injuries to the other firefighters.  Impacts to the safety goal are the primary focus of any investigation, but we will capture the other impacted goals as well.  In this case, the regulatory goal was impacted due to the non-compliant fireplace, the non-compliance being missed during inspection, and the prison sentence for the architect/owner.  Additionally the loss of the home and the time and effort put into firefighting and the subsequent trial impact the property and labor/time goals.

Once the impacts to the goals are determined, asking “why” questions begins to develop the cause-and-effect relationships that resulted in those impacts.  A Cause Map can start simple – in this example, the safety goal was impacted due to the death of a firefighter.  Why? Because the ceiling collapsed.  Why? Because the house was on fire.  Why? Because heat ignited flammable building materials.

Though this analysis is accurate, it’s certainly not complete.  More detail can be added to the Cause Map until the issue is adequately understood and all causes are included in the analysis.  Detail can be added by asking more “why” questions – the heat ignited flammable building materials because an outdoor-only fireplace was improperly used inside the house.  Causes can also be added by considering causes that both had to occur in order for the effect to happen.  The firefighter was killed when the ceiling collapsed AND the firefighter was beneath the ceiling, fighting the fire.  Had the ceiling collapsed but the firefighters not been inside, the firefighter would not have been killed by the ceiling collapse.

Detail can also be added between causes to provide more clarify.  In this case, the ceiling collapse was not directly caused by high heat.  Instead, the high heat activated and melted the sprinkler system, resulting in a buildup of water that caused the ceiling collapse.  The other goals that were impacted should also be added to the Cause Map, which may result in more causes.  In this case, the improperly installed fireplace was missed by the building inspector, which is an impact to the regulatory goal.  The reason it was missed was debated during the trial, but changes to the inspection process may result that would make this type of incident less likely, ideally reducing the risk to firefighters and home owners.

An incident analysis should have enough detail to lead to solutions that will reduce the risk of recurrence of the impacted goals.  As I mentioned previously, solutions from the perspective of the building inspectors may be to look specifically for issues on fireplaces that could lead to these types of fires.  Ideally, a way to determine if a sprinkler system was malfunctioning and leading to water collection could be developed that could reduce the risk to firefighters.  For homeowners, this incident should stand as a reminder that outdoor-only heat sources such as fireplaces are outdoor-only for a reason.

The loss of the Steamship General Slocum, June 15, 1904

By ThinkReliability Staff

On June 15, 1904, a church group headed out for an excursion through New York City’s East River on the Steamship General Slocum.  Approximately half an hour after the ship left the pier, it caught fire.  Despite being only hundreds of yards from shore, the Captain continued to go full speed ahead in hopes of beaching at North Brother Island, where a hospital was located.  This served to fan the flames quickly over the entire highly flammable ship, killing many in the inferno.  Most of those who were not killed by the fire drowned, even though the Captain did successfully beach the ship at North Brother Island, due to the depth of the water and lack of safety equipment.

To perform a root cause analysis of the General Slocum tragedy, we can use a Cause Map.  A thorough root cause analysis built as a Cause Map can capture all of the causes in a simple, intuitive format that fits on one page.  First we look at the impact to the goals.  On the General Slocum there were at least 1,021 fatalities of the passengers and crew that were aboard.  (However, only two of the crew were killed.)  Additionally, 180 were injured.  There were other goals that were affected but the loss of life makes any other goals insignificant.  The deaths and injuries are impacts to the safety goals.

Passengers drowned because they were in water over their heads with inadequate help or safety equipment.  Passengers were either in the water because they fell when the deck collapsed, or because they jumped into the water trying to avoid the fire.  The water was too deep to stand because only the bow was in shallow water and the passengers could not reach the bow.  This was due to a poor decision on the Master’s part (namely his decision to beach the ship at a severe angle, with the bow in towards the island, instead of parallel to the island, where passengers would have been able to wade to shore.)  Note that the Master himself (and most of the crew) were on the bow side of the ship and were able to (and did) jump off and wade to shore.  The safety equipment, including life preservers, life boats, and life rafts, was mostly unusable due to inadequate upkeep and inadequate inspections.

Passengers (and two crewmembers) were also killed by fire.  Once the fire was started, it spread rapidly and was not put out.    The fire spread rapidly because the ship was highly flammable.  When this ship was constructed, there was no consideration of flammability.  Additionally, the current of air created by the vessel speeding ahead drove the fire across the ship.  The fact that an experienced Master would have allowed this situation was considered misconduct, negligence and inattention to duty – charges for which the Master was later convicted.   The fire was not put out because of inadequate crew effort and insufficient fire-fighting equipment.  The crew effort was inadequate because of a lack of training.  The fire-fighting equipment was insufficient because of inadequate upkeep and inadequate inspections.  (Possibly you are noticing a theme here?)

Although many people have not heard of the General Slocum tragedy, many of its lessons learned have been implemented to make ship travel safer today.  However, many of the solutions were not implemented widely enough or in time to prevent the Titanic disaster from occurring eight years later.  (Although there were nearly as many people killed on the General Slocum, it is believed that the Titanic disaster is more well known because the passengers on Titanic were wealthy, as opposed to the working class passengers on General Slocum.  It is also surmised that sympathy for the highly German population aboard General Slocum was diminished as World War I began.)

In a macabre ending to a gruesome story, ships began replacing their outdated, decrepit life preservers after the investigation on General Slocum.  It was later found that the company selling these new life preservers had hidden iron bars within the buoyant material, in a dastardly attempt to raise their apparent weight.  Unfortunately there were no adequate laws (then) against selling defective life-saving equipment.