Tag Archives: Cause Mapping

Emergency Plan Could Have Saved Lives in TX Plant Explosion

by ThinkReliability Staff

Investigations are still ongoing to determine details on what caused the April 17, 2013 explosion in West, Texas (the subject of a previous blog).  The death toll has risen to at least 14, including 10 emergency workers.  Around 200 are believed to be injured.  The deaths were caused by the explosion of the site AND the proximity of the victims to the site.  The emergency workers were on-site fighting a fire (which was the ignition source of the explosion), but many of those injured had no real reason to be in such a proximity that they would be injured.   

Warning systems and emergency notifications may have resulted in some of the non-emergency response victims getting out of harm’s way.  However, warning systems and notifications like those required for other industrial sites including oil refineries and chemical plants are not required at fertilizer plants.  The plant owner did not comment on emergency management plans for the site.  Senator Barbara Boxer of California will attempt to determine if those requirements need to be strengthened. 

However, even if a warning system had provided sufficient protection to keep nearby citizens from harm, the property damage would have been extensive.  Many properties – including homes and schools – nearby were severely damaged in the blast.  This has led some to believe that there should be an enforced geographical buffer between these types of industrial facilities and other types of facilities, like homes and schools.  The mayor of West has suggested that the plant be rebuilt away from populated areas. 

More and more concerns are being raised about the safety of the plant itself – and the safeguards that could have prevented this explosion.  Despite the large amount of potentially explosive ammonium nitrate stored at the plant, the plant did not have a sprinkler system or fire barrier (which may have prevented the fire from igniting the fertilizer).   

Industrial plants such as these are regulated by a host of state and federal agencies, including the Environmental Protection Agency (EPA).  The EPA required a worst-case scenario from the West site, which identified a release from an anhydrous ammonia storage tank.  The risk of fire or explosion, and the storage of ammonium nitrate were not identified in the scenario, provided in 2011.  (The facility was fined in 2006 for not filing its risk management plan.) 

A key concern is the amount of fertilizer (270 tons) that was stored at the site – which was not disclosed with local governments or federal agencies.  Ammonium nitrate can be used as an explosive (~2.4 tons were used in the Oklahoma City bombing in 1995).  The high volume of ammonium nitrate was not known or disclosed to local or federal officials.   

Most of the victims in this incident were first responders – who had reported to the fire, not knowing the risk they were taking.  The facility had not disclosed the dangers on site, had not provided adequate protection from fire, and had provided little in the way of an effective emergency response plan.   

Every industrial site should have an up-to-date risk/emergency management plan.  The plan needs to be updated whenever new hazards are brought on-site or identified.  It is crucial that these plans be developed and shared with local response organizations, such as fire-fighters, so that they can be prepared for any potential issues.  These plans should also include community engagement to provide necessary information to people in the area as to what actions should be taken.  Existing incident investigations for industrial incidents can be used as a basis for creating these plans.  But, you don’t need to wait until you have a problem at your facility.  Taking the lessons learned from disasters that have already taken place can save your facility – and your community – a tot of heartbreak.   

Remember: A smart man learns from his mistakes, but a wise man learns from others’ mistakes. 

Contaminated Water Issues Remain at Fukushima

by ThinkReliability Staff

High levels of contaminated water leaving the highly damaged reactors at the Fukushima Daiichi nuclear power plant in Japan are creating issues for the personnel on site, who are working frantically to keep the reactor safe and working towards decommissioning and closing down the site.  Additionally, there is continued concern for the ongoing safety of the site, as the high volume of water could potentially threaten the safety of the reactors.

We can look at these issues in a Cause Map, or visual root cause analysis.  With a Cause Map, the first step is to determine how the issue impacts the organization’s goals.  In this case, we can consider the goals from the perspective of the utility company that owns the power plant.  There is an impact to the safety goal because of the potential risk for another accident, according to the Chairman of the Nuclear Regulatory Authority.  The leakage of contaminated water is an impact to the environmental goal.  There is concern about the lack of a comprehensive plan by the utility, which can be considered an impact to the customer service goal.  The massive construction efforts required to install tanks to store the water are an impact to the property goal and the efforts by the workers to control the flow are an impact to the labor goal.

Once the impacts to the goals have been determined, the next step is asking “Why” questions to determine the cause-and-effect relationships that led to the incident.  In this case, the issues resulting in the high rate of contaminated water needing to be stored are that high rates of water are entering the reactor, becoming contaminated due to the damage inside the buildings from the earthquake and tsunami on March 11, 2011, and the water has to be removed from the building.

The water is entering the buildings because the plant is in the groundwater flow path from the mountains to the ocean and there is insufficient protection to prevent the water accessing the plant.   Severe cracking in the reactor buildings from the earthquake/tsunami are unable to be repaired due to the high residual levels of radioactivity.  The utility rejected plans to build a wall to protect the reactor.  It is believed this is because the utility had planned to dump the water into the ocean.   Additionally, according to the Japan Atomic Energy Commission, the issues from the water weren’t something that were thought of, as the focus was on the nuclear issues.  All involved in the cleanup, including the utility, have had their hands full, so it’s likely something as benign-seeming as water just wasn’t on the list of immediate concerns.

The contaminated water must be pumped out of the building to avoid swamping the cooling systems, which are still needed to remove decay heat that continues to be produced even after the reactors are shut down.  It appears that the original plan was to filter the water and dump it into the ocean, but even after filtering, a high level (about one hundred times the level released from a healthy plant) of tritium would remain.  Public outcry has ended the possibility of being able to dispose of the water that way.  Wastewater pits originally built for this purpose were found last month to be leaking, necessitating the installation of hundreds of tanks for water storage.

For now, the utility workers continue to install tanks to hold the radioactive water.  The task is so overwhelming, it’s not clear if there are any other plans to try and slow the tide of contaminated water.  However, outside experts are attempting to provide assistance.  The International Atomic Energy Agency completed its initial review of the decommissioning plans last month.  The final team report is expected later this month.

To view the Outline and Cause Map, please click “Download PDF” above.  Or click here to read more.

The 8 Worst Typos Ever Made

By ThinkReliability Staff

When we perform a root cause analysis, we occasionally find that something as seemingly minor as a typo has had a huge impact on an organization’s bottom line, their reputation, or even public safety.  The following is a collection of some of the worst typos ever made, with respect to impacts to the organization’s goals.

8. Misspelling your own name 

The Oops: In 2008, a New Hampshire newspaper misspelled its own name, in the front page title, specifically by adding an extra “s”.  Missouri State University misspelled its own name on bags provided to students (Univeristy [sic]).  The error was pointed out by a student.  However, the most well-known of this kind of error probably occurred when “Chile” was misspelled on their 50-peso coin.  The misprinting occurred in 2008, but was not noticed until late 2009.  (Rather than CHILE, the coin said “CHIIE” [sic].  The coins are now collectors’ items.)

The Impact:  The general  manager of the Chilean mint was fired for the coin error.  In the newspaper and university cases, actual cost was minimal and the main impact was abject embarrassment.  However, typos can frequently result in loss of opportunities.  Some recruiters have said that when they get multiple submissions for a single job, resumes with errors go straight to the shredder.

7. Counting on a computer to do your job for you 

The Oops: On January 7, 2009, the US Army admitted that 7,000 letters addressed “Dear John Doe” were sent out to family members of soldiers killed in Iraq.

The Impact: The Army immediately issued a formal apology and sent a personal note to the families.  The letters were sent to the correct families, but there must have been a devastating moment for the families when they thought they may have received someone else’s letter . . . and then realized they hadn’t.

6. Entering the wrong number 

The Oops: On February 5, 2011, an employee at a company in Japan listed 610,000 shares of a job recruiting company at 1 yen apiece.  What it really meant to do was list 1 share at 610,000 yen (~$5,000).  A surprising number of similar stories abound, including a listing on April 5, 2006 for flights from Canada to Cyprus for $39 CAD, instead of $3,900.

The Impact: Although the company in Japan tried to cancel the order, it was processed by the Tokyo Stock Exchange, resulting in a loss of $225 million.   In the case of the surprisingly cheap airline tickets, they were honored by the airline (after initially trying to cancel the tickets) to 500-2000 people, resulting in a very expensive typo indeed.

5. Incorrect punctuation 

The Oops: A communications company in Canada thought it had a five-year deal beginning in spring 2002 with a utility company to add cable lines to thousands of utility poles.  Then the utility company cancelled in early 2006.  The Canadian Radio-television and Telecommunications Commission determined that, because of an extra comma, the contract said that the contract could be cancelled with one-year’s notice, even during the first five years.  (The area in question said the contract: “shall continue in force for a period of five years from the date it is made, and thereafter for successive five year terms, unless and until terminated by one year prior notice in writing  by either party.”)  A missing hyphen in the coded computer instructions was partially responsible for the loss of steering on Mariner 1, which was launched on July 22, 1962.

The Impact: After the cancellation, the utility upped its rates for the use of the poles, which will result in the communications company paying about $2.13 million more than it thought.  But if you think that’s expensive, even worse was the loss of Mariner 1, which had to be blown up when it could no longer be steered.  The value of the Mariner 1 in 1962 was $18.5 million.

4. Using the wrong units 

The Oops: The Mars Climate Orbiter was lost on September 23, 1998 while trying to establish orbit around Mars.  Turns out the trajectory was lower than expected (allowing the orbiter to be subjected to the extreme heat of the Martian atmosphere) because incorrect velocity changes were used in calculations.  Specifically, results from a software program were provided in pound force (English System of Units) and the program predicting the velocity assumed the results were  in Newtons (International System of Units, or SI), a factor of difference of 4.45.  (Read more about the Mars Climate Orbiter.)

The Impact: The Mars Climate Orbiter was destroyed with a complete loss of mission.  The orbiter cost $125 million in 1998.

3. Leaving out a (very important) word 

The Oops:  The interesting thing about some small words (like “not” or “out”) is that they change the meaning of the entire sentence.  A man named Bruce Wayne Morris (who does not become Batman) was sentenced to death in 1987 after the jury was given the choice of death or prison for life with the possibility of parole.  The choice was in fact between execution or a life sentence without parole.

The Impact: Morris’ death sentence was reversed by a federal appeals court in 2001 – that’s right, 11 years later.  (The cost of 11 years worth of deliberation and appeals is not known.)  It is thought that the jury originally opted for the death sentence rather than worrying about him being released on parole at some point in the future.

2. Checking the wrong box 

The Oops:  On January 28, 2013, Evan Spencer Ebel was released from jail, the result of a clerical error.  In 2008, while serving eight years, Ebel pleaded guilty to assaulting a prison guard.  The additional sentence was to be served after the original eight-year sentence.  Instead, the record indicated that the second sentence was to be served concurrent with the original sentence.

The Impact: Ebel is believed to have murdered a pizza delivery man on March 17 and the executive director of the state Department of Corrections on March 19 before he was killed by deputies in Texas on March 21.  A similar situation also ended in tragedy when Charles Anthony Edwards III was mistakenly discharged  in January 2012 from a high-security mental hospital in California, where he is suspected of fatally stabbing a shop owner.

1. Writing illegibly 

The Oops:  While bad penmanship may not necessarily be considered a typo, it can result in the same kinds of problems.  Bad penmanship means that the person who has to read it is much more likely to read it incorrectly.  In one such case, the registration for a ship’s Emergency Position Indicating Radio Beacon (EPIRB) was written sloppily, and a “C” become a “0”.  This didn’t much matter until more than two years later, on March 24, 2009, when the ship (Lady Mary) began to sink and set off its EPIRB.  Because the code was entered incorrectly, it took more than an hour and a half to locate the ship.

The Impact: By the time the Lady Mary was reached (the delay was due to other compounding errors as well), only one crew member was able to be saved.  The other six men were lost at sea.

What to do so this doesn’t happen to you 

When something is important, give it an extra edit.  Specifically, find someone who is not a coworker (a coworker will likely gloss over the same things you did, like the name of your organization).  Motivated teenagers make great editors.  Offer them a dollar for every error they find.  (It’s well worth it.)

Note that legal documents, given the importance of their exact wording and difficulty changing any whoopsies, should be extra, extra carefully edited.

If you really don’t have time to get an independent edit, try reading it out loud.

When your computer is doing some of the work for you, it’s probably a good idea to actually look at a few of the results.

When you’re working with numbers, which are much more difficult to check for errors than words (“univeristy” [sic] is not a word, but 39 is still a number), perform a related math calculation.  One that in particular could have come in handy here is the percentage reduction in the cost of the item.   (Plane tickets at 99% off?  Maybe you want to look at that one again.)

Also, your math teachers weren’t kidding about always using units with your numbers.  Or else you might as well answer the question “How far is it?” with “10”.  If at any point in your analysis a different unit of measurement comes up, go ahead and write both, the way many cookbooks and measuring cups now contain both ounces (English System of Units) and milliliters (Metric System of Units).

All the editing tips above may help, but maybe more important is an understanding of the possible impact of a seemingly innocuous typo.  Yes, they happen to everyone.  But before you let them out of your office, take another look.  If someone thinks you’re wasting your time, show them the two million-dollar examples above.

I’ve made a handy sheet to remind you why you care about editing.  To take a look and print it out for your wall, please click “Download PDF” above.

Deadly Explosion at Texas Fertilizer Plant

By ThinkReliability Staff

An explosion at a fertilizer plant in West, Texas, destroyed much of the town and killed between 5-15 people.   (Search and rescue is still ongoing.)  At least 160 were injured but that number may increase.  The material involved in the explosion was ammonium nitrate, a popular fertilizer.

Capturing the impacts to the goals as a result of an issue is essential to understanding the true effect.  In this case, the fatalities and injuries were severe.  The property damage, which included the plant, as well as the homes of more than 100 families, was also extensive.  An environmental impact resulted from the release of ammonia, which is a respiratory irritant. There was some level of evacuation, which can be considered an impact to the customer service goal, though the high number of injuries has led some to believe the evacuation was not widespread enough.  Additionally, ongoing search and rescue, and firefighting operations are an impact to the labor goal.

These goals were all impacted due to the explosion at the fertilizer plant.  Ammonium nitrate can explode when ignited at very high temperatures.  In this case, a fire provided the high heat.  We can capture these causes in a Cause Map, or a visual form of root cause analysis.  The cause of the fire itself is as yet unknown, though if that is determined we can add it to the Cause Map as well.

What is known is that efforts to prevent explosion were ineffective.  The plant did not believe that an explosion was possible.  Its internal safety review had a worst-case scenario of a ten-minute ammonia release, causing no injuries.  It is fairly rare that ammonia nitrate explodes; only 17 known cases of unintended ammonia nitrate explosions resulting in fatalities have occurred since 1921.  Firefighters were on scene fighting the fire when the explosion occurred, leading to many responder fatalities and injuries.  Oversight at the facility was limited; OSHA has not inspected the facility for at least the last five years.

It is worth exploring why large amounts of ammonium nitrate were present.  Ammonium nitrate is an inexpensive, effective fertilizer.  It is particularly good at delivering nitrogen to food-bearing plants, like fruit trees.  The use of nitrogen greatly increases the yield of food from these plants.  (It is said to increase the carrying capacity, or number of people who can be supported by a hectare of land – from 1.9 to 4.3.)  Given the shortage of food-growing land, this is certainly important.   However, the benefits must be considered alongside the risk and certainly in the future more oversight of these types of facilities may be needed to protect the public from the process as they benefit from the results.

To view the Outline and Cause Map, please click “Download PDF” above.

The Deadliest Airship Crash in History Wasn’t the Hindenburg

By Kim Smiley

Many people have heard of the Hindenburg, but have you heard of the USS Akron?  The Hindenburg crashed in 1937, killing 35 people. The USS Akron crash four years earlier killed 73, making it the deadliest airship crash in history.

The crash of the USS Akron can be investigated by building a Cause Map, a visual format for performing a root cause analysis.  A Cause Map is built by asking “why” questions to determine what causes contributed to an issue.  The causes are organized on the Cause Map to illustrate the cause-and-effect relationships between them.  Why were 73 people killed?  This occurred because they were onboard the USS Akron, the airship struck the ocean surface, the crew had little time to brace for impact and there were insufficient flotation devices onboard.

The crew was onboard the USS Akron because the airship was operated by the US Navy and was performing a routine mission at the time of the crash.  The airship hit the ocean because it was operating over the ocean and lost altitude in a severe storm.  Why was the airship operating in a storm?  There was no severe weather predicted at the time and a low pressure system unexpectedly developed.  The crew had little time to brace for the impact because they weren’t aware that an impact was imminent.  There was low visibility at the time because it was a stormy, dark night. The barometric altimeter was also showing that the airship was higher than it actually was.  Barometric altimeters are affected by pressure and the low pressure in the storm impacted more than the crew realized.   The lack of life jackets and other floatation devices also contributed to the high number of deaths.  There were no life jackets onboard the airship at the time of the crash and only one rubber raft.  The safety equipment had been given to another airship and had never been replaced.

While few of us plan to operate or build an airship anytime in the near future, the important of keeping sufficient safety gear onboard any vehicle of any kind is an important lesson.  Lack of safety gear is a reoccurring theme in many historical disasters.  For example, the sinking of the Titanic would be a very different story if there had been sufficient lifeboats onboard.  This example might be very different if the crew had been wearing life jackets.  The airship would still have been lost, but there would likely have been fewer casualties.

To view a high level Cause Map of this example, click on “Download PDF” above.

Collapse of Salt Mine Creates Massive Sinkhole in LA

By Kim Smiley

On August 3, 2012, a massive sinkhole appeared in Assumption Parish, Louisiana that continues to grow and evade easy answers.   About 150 homes were evacuated and residents are still displaced more than seven months later.

What caused a sinkhole to form overnight?

That question can be answered by building a Cause Map, a visual root cause analysis.  In the Cause Mapping process, the first step is to fill in an Outline with the background information for an issue as well as how the problem impacts the goals.  In this example, the sinkhole impacts several goals including the environmental goal, the safety goal because there is a potential for injuries, the financial goal because of the costs associated with the emergency response and remediation of the issue, and the customer service goal because 150 homes have been evacuated for an extended time.  Once the Outline is completed, the next step is to ask “why” questions to find the different causes that contributed to the problem being analyzed.

So why did the sinkhole form?  The sinkhole formed when an underground salt mine collapsed.  This happened because there was a salt mine in the area and a wall of the mine failed.  Salt was mined in the area because there was a large deposit of salt underground and salt mining is profitable since it is used in a wide range of industries.  The wall collapsed because it was too thin to support the pressure because the mine was inadvertently located too close to the edge of the salt deposit.  The mine ended up too near the edge because the location of the salt deposit wasn’t accurately known.  It’s difficult to access salt deposits thousands of feet underground and the mine was permitted in 1982, using 1960s maps of the salt deposit, using technology that was limited compared to what is used today.

There is also a potential for injuries associated with the sinkhole both because it continues to grow and because there is a risk of explosion from the natural gas being released.  The sinkhole has given the underground pockets of natural gas a pathway to the surface. Workers are trying to minimize the danger by flaring the gas off and ensuring there isn’t anywhere it can build up.

The financial impacts of this issue are substantial, both to the community and the mining company.  The salt mining company is in negotiations to buy out the displaced residents and has been providing financial support to them during the evacuation.  The costs of the emergency response are also adding up, not to mention the cost of whatever remediation is necessary once the area becomes stable and the full extent of the issue is known.

The final step of the Cause Mapping process is to develop solutions to prevent the problem from reoccurring.  This is still an ongoing issue, but some steps have already been taken to help prevent future sinkholes from forming.  Advances in technology have already improved understanding of underground deposits and will help in locating future mines.  Another possible solution is regulation changes to require mines to be located farther from the edge deposit.

To view an Outline and a high level Cause Map for this issue, click on “Download PDF” above.

Hindenburg Crash: The Importance – and Difficulty – of Validating Evidence

By ThinkReliability Staff

Since the Hindenburg explosion in 1937, theories have abounded on what caused the leaking gas and spark that doomed the airship and dozens of passengers.  We discussed some of these theories in our previous blog on the Hindenburg disaster.

In December, 2012, a documentary on the Discovery Channel used new evidence to discuss the most likely cause of the disaster.  Yep, that’s right.  76 years after the original explosion, evidence is still being gathered to help determine what really caused the explosion that killed 36 people.

Sometimes evidence is relatively easy to gather – many pieces of equipment now feed into automatic data collectors, which can provide reams of data about what happened for a specific period of time.  Sometimes, however, evidence is much harder to come by. This is especially the case with fires or explosions which frequently destroy much of the available evidence.

When evidence is hard to come by, it is difficult to determine the exact cause-and-effect relationships that led to an incident.  The best we may be able to do is capture different possibilities in a Cause Map, or visual root cause analysis, and leave the causes that haven’t been validated by evidence as possible causes, indicated by a question mark.

Sometimes, determining the exact cause(s) is important enough to result in painstaking efforts like those performed by a team at the South West Research Institute.  The team created three 1/10-scale models, not a small undertaking when the scale models are over 80 feet in length and is inflated with 200 cubic meters of hydrogen.  They then replicated scenarios described by the various theories by setting fire to, and blowing up, the models.  Additionally, they studied archive footage and eyewitness accounts to increase their understanding of the disaster.

As a result, the team now believes they have determined what happened.  Says Jem Stansfield, an aeronautical engineer and the project lead, “I think the most likely mechanism for providing the spark is electrostatic.”   The spark ignited leaking hydrogen, caused by a broken tensioning wire that punctured a gas cell or a sticking gas valve.

View the updated investigation with the recently released evidence incorporated by clicking “Download PDF” above.

Read our detailed writeup on the Hindenburg investigation.

Or, click here to read more from the blog of the on-air historian and technical advisor to the project (some really cool photos of making and destroying the models are included).

The Super Bowl Blacks Out in New Orleans

By Kim Smiley

The Super Bowl is always one of the most talked about television events of the year and this year the game was even more interesting than usual.  An impressive comeback attempt following a game delaying blackout made this one to remember.

The question of what caused the highly publicized blackout can be analyzed by building a Cause Map, an intuitive, visual format for performing a root cause analysis.  The first step in building a Cause Map is to fill in an Outline with the background information for the issue.  The goals that are impacted by an issue are listed on the bottom of the Outline.  In this example, the schedule goal is impacted because the Super Bowl was delayed; the material goal is impacted because a component called an electrical relay device needs to be replaced; and the customer service goal was impacted because the delay changed the momentum of the game significantly.    Individual fans may disagree, but the companies who have profits impacted by the Super Bowl probably consider the momentum shift a pleasant side effect of the blackout since the last 17 minutes of this game were the most watched.  Once the Outline is complete, the Cause Map is built by asking “why” questions.

Starting with the schedule goal, the next step would be to ask “why” the Super Bowl was delayed.    This happened because the game wasn’t able to be played because of a partial loss of power.  The electrical company has announced that a component called an electrical relay device failed, but the exact reason it failed hasn’t been determined.   Another cause that can be added to the Cause Map is that the backup power was insufficient to power the whole Stadium.  This cause is worth considering because a possible solution to this problem could be to add a more robust back up system to mitigate any future power issues.

The relay had been installed during major system upgrades that were performed during the previous two years to ensure that the stadium was ready for the demands of hosting the Super Bowl.  The relay was added to protect the Superdome electrical equipment if there was a cable failure between the incoming power lines (operated by the electric company) and the lines that run through the stadium.

This power problem is still being reviewed and it is still being determined if an independent review of the issue is necessary.  Once more facts are known, they can be easily incorporated into the Cause Map.  The final step in the Cause Mapping process would be to develop solutions that would help mitigate the issue and prevent future power failures.

See more power outage cause maps:

The Costa Allegra Loses Power

Power Outage Stretches from Arizona to California

Chile Power Outage 

Want us to cause map a specific power outage for you? Contact us at  info@thinkreliability.com and we’ll give you a “lights out” root cause analysis.

Brazilian Nightclub Fire Kills At Least 238 People

By ThinkReliability Staff

A pyrotechnics display meant for outdoor use turned deadly at a band concert in a nightclub in Brazil on January 27, 2013.  The pyrotechnics – which were set off by the band – lit the soundproofing on the ceiling and it spread – with little help from non-functioning fire extinguishers.  The large crowd had difficulty leaving the club, which had only one exit blocked by bouncers who thought patrons were trying to leave without paying.

This tragic incident can be examined using a Cause Map, or visual root cause analysis, which visually diagrams all the causes and impacts related to the nightclub fire.  We begin with the impacted goals.  The safety goal was impacted due to the at least 238 people who were killed and 100 who were injured.  The severe fire is an impact to the environment.  People were unable to exit, which can be considered an impact to the customer service goal.  The loss of the use of the nightclub is an impact to the production goal, and the damage is an impact to the property goal.  Additionally, members of the band and owners of the nightclub are being held, potentially to be charged with manslaughter.  This can be considered an impact to the employee goal.

We begin developing cause-and-effect relationships by asking “Why” questions.  People were killed because they were in the nightclub, unable to exit and there was a severe fire.  Questions have been raised about why the nightclub was even in operation, as its licenses were expired.  People were unable to exit because there was only one exit – completely insufficient for a facility of this size and no windows in the bathroom.  Bouncers were blocking the only exit because they believed patrons were trying to leave without paying – nobody had told them of the fire.  Difficulty seeing the exits due to smoke and lost power resulting from the fire complicated matters even more.

The fire began when the pyrotechnics (heat) lit the soundproofing on the ceiling (fuel).  The fire was unable to be put out due to difficulties reaching the ceiling and non-functioning fire extinguishers.  Specific solutions are being debated by lawmakers in Brazil, but it is hoped that this tragedy will draw attention to – and improve – some of the conditions that contributed to this tragedy.

To view the Outline and Cause Map, please click “Download PDF” above.  Click here to read about another building fire.

 

The Dreamliner’s Battery Nightmare

By Kim Smiley

On January 16, 2013, the Federal Aviation Administration issued an emergency directive grounding all Boeing 787 Dreamliners operated by United States carriers during the investigation into two recent battery fires.  This emergency grounding is an unusually extreme step, especially given that the Dreamliner is a new plane with only six operated by US carriers at this time.

This issue can be analyzed by building a Cause Map, an intuitive, visual format for performing a root cause analysis.  A Cause Map is built by determining how the issue affects the goals of an organization and then asking “why” questions to find the causes that contributed to the problem.  In this example, the schedule goal is impacted because the Dreamliners have been grounded.  Why?  The Dreamliners were grounded because there is a known fire risk because there were two battery fires onboard these airplanes nine days apart.  The fact that the Dreamliner is the first major airliner to extensively use lithium-ion batteries and that fires in these batteries are particularly dangerous also contribute to the problem.   Lithium-ion batteries were used because they are lighter than other batteries and lighter planes use less fuel.  Fires in lithium-ion batteries are dangerous because they are difficult to extinguish because oxygen is released as they burn, which feeds the fire.

Several other goals are also worth considering like the customer service goal which is impacted by the negative publicity generated by this issue and the safety goal because there is a potential for injuries.   The economic impact of this issue could also be very significant since each Dreamliner costs $200 million and there are 800 planes on order in addition to about 50 that were already in service that may need to be repaired.

The battery fires are still being investigated but the cause isn’t known yet.  It may be an issue with manufacturing or the design itself.  What is known is that the Dreamliner is a brand new design that incorporates many new elements such as mostly electrical flight systems, an airframe that uses composite materials and the use of the lithium-ion batteries themselves.  The design process was also different from previous Boeing designs with much of the work outsourced to a network of global suppliers and very tight deadlines.

As more information becomes available, the Cause Map can easily be expanded to incorporate it.  To view a high level Cause Map of this issue, click on “Download PDF” above.